Skip to content

“These Days, Everyone Needs a Side Hustle”

November 23, 2016

Uber has TV ads now. The one I see most often is called “Get Your Side Hustle On”. It opens with a thirty-something black male Uber driver telling us, somewhat wearily, “These days, everyone needs a side hustle.” Then the upbeat horns pick up, he and his passenger start dancing, and he tells us how Uber helps drivers move “from earning, to working, to chilling at the push of a button.” He’s earning in his car, working when he’s teaching middle-school chemistry, and chilling when he’s passed out on the couch in the middle of the day, his daughter reading beside him. The side hustle is what helps you make ends meet. Uber, now valued at around $62.5 billion, helps you get your side hustle on whenever you have spare time to slip between your full-time job, your childcare responsibilities, your social life, and your sleep schedule.

There’s some romance to this story, of course; Americans love a hustler. But all credit to Uber, because this ad seems to be an accurate representation of their business model and the reason why they, founded in 2009 and officially launched in 2011, and the rest of the gig economy have grown so rapidly in the wake of the 2008 financial crisis.  New data from Pew show that folks on the fringes of the formal labor market, those without secure jobs or the sort of wealth that provides a cushion in tough times, are seeking out gig economy work to make ends meet.

This a sizable group: 8% of Americans earned money from technology-enabled gig work last year. Pew calls these tools for soliciting drivers, handymen, shoppers, and data-enterers ‘labor platforms’, distinct from the ‘capital platforms’ used to rent your home or sell your bespoke wares. Another 18% of Americans made money from the latter in the last year. It is no coincidence that the growth and success of gig platforms has taken place during a period of stagnant wages and labor market bifurcation (i.e., the jobs generated in the wake of the crisis have been concentrated in high-wage knowledge sectors and low-wage service sectors, with the middle increasingly disappearing). It is precisely because so many Americans have needed to find a little work on the side that these gig platforms are thriving. These days, everyone needs a side hustle.

This is not an altogether new phenomenon. The so-called ‘informal economy’ often grows during recessions. When good jobs are hard to find, people seek out other, less-regulated means to put food on the table: selling food out of a cooler at the bus stop, taking in neighbors’ laundry, offering handyman services to other members of your church, or driving an unlicensed taxi for a few spare bucks. In previous eras, these would have been largely off-the-books, cash-only exchanges, because individual hustlers don’t want to get the health department, the taxicab commission, or the taxman involved. But the genius of Uber, TaskRabbit, and the like is that they formalize these previously informal exchanges by making them accessible to any consumer with a credit card and a smartphone, while simultaneously retaining the informality that frees the company from the obligations employers typically owe employees or regulators. And of course, gig platforms create many new opportunities for this work just by providing extensive logistical support for it, support that justifies their extraction of rent from this newly formalized work conducted on their platforms.

What was the macroeconomic soil in which these business models took root? According to the Economic Policy Institute, while US workers’ productivity has grown by leaps and bounds since 1979, their real wages have barely budged—and low-wage workers’ pay has actually fallen. The exception is the top 5% of earners, whose wages have grown 41% since 1979. So most of our wages haven’t grown in a few decades, while the cost of expensive, essential outlays like housing, healthcare, and college have soared.

More recently, the 2008 financial crash destroyed many Americans’ financial safety nets by wiping out their main sources of wealth—their investment in their homes and their retirement accounts, typically 401Ks—and put serious strain on other savings and investments, if they had them. There has always been a massive wealth gap between white Americans and people of color, which severely restricts the social mobility of the latter, since inherited wealth is a crucial ingredient in affording big things like housing and college and smaller things like unpaid internships This gap widened a great deal in the wake of the housing crash, with black and Latino households losing three and four times more wealth respectively than white households between 2007 and 2010. And while the unemployment rate has finally fallen back to pre-recession levels, the jobs that we have regained since the recession have not been good ones. The National Employment Law Project found that while employment losses during the recession were concentrated in mid-wage and higher-wage industries, the employment gains during the recovery have been concentrated in low-wage industries.  We’ve had an uneven recovery, especially for people of color.

How does Pew’s new data on gig economy workers fit into these trends? Well, the data only provide a snapshot. To confirm my speculation that gig platforms capture precarious Americans’ informal work and extend the opportunity for a side hustle to others, we’d need to know more about trends in gig economy work across time and geography (e.g., whether tighter local labor markets discouraged gig work or not), and what sort of other work gig workers are doing. But this snapshot seems to support my suspicions:

  • 56% of labor platform users say the money they earn through those platforms is either ‘essential’ or ‘important’ to meeting their basic needs, as opposed to being ‘nice to have’ (42%). They’re more likely to have a household income below $30,000 (57%), be nonwhite (64%), and lack a college degree (52%).
  • Recalling our black male middle-school teacher going from chilling to working at the push of a button, labor platform users for whom those earnings are essential or important are more likely to say they use the platform because it gives them control over their own schedule (45%) and because there are few jobs in their area (25%). Those who say the money is nice to have are more often (62%) motivated by the work being fun, or just something to do.
  • 14% of black Americans and 11% of Latinos earned money from online gig work in the past year, compared to 5% of whites. Black Americans are more likely to have done physical gigs like driving or taking in laundry (5%) than white Americans (1%)
  • Fewer than half (44%) of technology-enabled gig workers are employed full-time. 32% are unemployed.
  • Americans making less than $30,000 per year are more than twice as likely (10%) to do gig work than Americans making more than $75,000 per year (4%).
  • Compared to Americans overall, technology-enabled gig workers are less likely to have health insurance (10% lower than the national average), a credit card (15% lower), or a retirement account (13% lower).

Importantly, Pew finds large differences between labor and capital platforms; users of the latter are older, whiter, wealthier, more highly educated, and less reliant on these earnings than gig workers. Who, then, is most likely to be a gig worker who needs that side hustle? A working-class person of color without a college degree who is fitting that hustle in between other life tasks because they’re making less than $30,000 a year, lack a financial safety net, and struggle to afford healthcare. So, that Uber ad wasn’t 100% correct: Some people need a side hustle more than others these days.

The language of the ‘sharing economy’ positions all of us equally in the same community of app users. Indeed, the main advocacy group for the industry, now packaging portable benefits for gig workers, is simply called Peers. But if we read the latest data alongside earlier data on consumers of gig platform labor, it becomes clear that we are not all on the same page. An earlier Pew report found that super-users who purchase services from six or more of these platforms are generally digitally literate, college-educated urbanites making $75,000 or more. The gulf between frequent suppliers of labor to these platforms and frequent purchasers of that labor mirrors the gulf in the labor market that has been growing for decades but which ballooned after the recession: Low-wage service jobs with unpredictable schedules and no benefits on one side, and high-wage knowledge economy jobs concentrated in urban areas on the other.

That so many are desperate to supply their labor for these platforms must surely be a major factor in their growth. They were the right model for the right moment. With good jobs drying up and people looking for extra, flexible, informal work, these digital platforms were ready to welcome them. In precarious times, the side hustle is a growth industry.


Dan is a postdoctoral researcher with the Social Media Collective at Microsoft Research New England.  He studies the institutions and technologies that teach us how, where, and why to work in the information economy. You can learn more about him and his research at dmgreene.net.

Spike in Online Gig Work: Flash in the Pan or Future of Employment?

November 17, 2016

Most conventional jobs involve hierarchy. A boss divvies up work to the office’s full-time employees awaiting direction and a green light. While still true for the majority of American workers, a growing number of people are picking up work online — accepting jobs with companies that assign, schedule, route, and pay for work through websites or mobile apps. This on-demand “gig work” is unraveling the typical job. Yet none of our current workplace statistics or labor laws reckon with the new employment reality turning APIs into shift managers. Our research team spent the past two years conducting one of the largest, most comprehensive studies of its kind to learn about the lives of on-demand gig workers. One of our greatest challenges was that we didn’t have a representative sample of American workers that could validate and enrich our findings. That is…until now.

We shared our survey questions and preliminary findings with the Pew Research Center for Internet, Science and Tech as they designed their survey, “Gig Work, Online Selling and Home Sharing.” Pew wanted to develop a better way to gauge how many people, from a representative sample of the U.S. population, participate in gig work, ridesharing (think apps like Uber and Lyft) and homesharing (via sites like Airbnb and VRBO). It is hard to get a good headcount of those earning an income in the gig economy because the words to describe these jobs change with the launch of a new on-demand service or court case challenging what it means to “work” for a mobile app. Ridesharing and homesharing are more visible in the media. But a variety of jobs are quietly shifting online to become on-demand gig work, too. TaskRabbit and Thumbtack, for example, connect consumers with trade workers available to do the task. Crowdflower and Amazon Mechanical Turk are two of the more popular “crowdsourcing” platforms. They offer companies a way to post tasks online to a pool of people who have signed up to sift through the platform’s online listings of work opportunities. These public crowdsourcing platforms are the tip of the spear. Today, nearly every large tech company developing artificial intelligence uses proprietary services like these. The on-demand labor that AI-fueled jobs create is hard to measure, let alone see. The typical jobs performed on these platforms are white-collar office gigs, like transcribing audio, labeling images, and reviewing social media material flagged as “adult content” or “not safe for work.”

Before Pew’s report, scholars and policymakers had only the Contingent and Alternative Employment Arrangements survey, last run in 2005, to estimate the size and growth rate of this workforce. A lot has changed since then but worker surveys never caught up with the technology trends radically altering the workplace.

The Pew’s findings confirmed everything we learned. It is the perfect complement to our roughly 200 in-person interviews, tens of thousands of survey responses, dozens of behavioral experiments and big data analyses of gig work platforms. It also spotlights how quickly temp and contract work have changed for U.S. workers since the Great Recession.

According to the Pew report, about 5% of the U.S. population, or 1-in-20 people, does some form of online gig work. To put that in perspective, online gig work was a far more common source of income than homesharing (at about 2%) or ridesharing (around 1%).

How important is earning money from gig work to those who do it? Are we talking about college students earning beer money or people trying to put food on the table? According to Pew:

· Only 8% of those surveyed said the money they earned from selling goods online is “essential for meeting my basic needs.”

· Eighteen percent said the same of money earned from homesharing.

· But roughly one quarter of those doing gig work reported that the money they earned was essential for meeting their basic needs.

· Another one quarter said the money was important.

According to the Pew analysis, “workers who describe the income they earn from these platforms as ‘essential’ or ‘important’ are more likely to come from low-income households, more likely to be non-white and more likely to have not attended college.”

The reliance on gig work income reported in the Pew survey is echoed in our own survey of over 2,000 gig workers, collected across 4 different platforms. Over half of our study’s respondents reported that they had a minimum amount of money that they needed to make that month from gig work.

Part of gig work’s appeal is a chance to manage one’s own workflows. Of the people who said doing gig work was “essential” or “important” in the Pew survey:

· Just under half reported that they do this work because they have a “need to control their own schedule.”

· Another quarter said there was a “lack of other jobs where they live.”

In fact, according to one of our study’s experiments, gig workers were willing to take somewhere between a $0.40/hour and $0.80/hour pay cut to work on tasks that allowed them some degree of control over when they complete the task. And almost every one of our interview participants described balancing care for a loved one or completing a school program as the kind of constraint that pushed them to seek online work. Clearly, people do this kind of work because they need the job, they need to control their schedules and/or they don’t have a lot of employment options in their hometowns.

Pay attention to online gig work because it is dramatically reshaping our society. Labor economists Lawrence Katz and Al Krueger estimate that conventional temp and alternative contract-driven work rose from 10 to 16%, accounting for all net employment growth in the US economy in the past decade. Assuming Pew’s trends continue at the current rate, by the year 2027, nearly 1 in 3 American adults will transition to online platforms to support themselves with on-demand gig work. This is only bad news if we do nothing to change the outdated laws and structures in place to support working people. Ignoring corporate and consumer dependency on an on-demand gig workforce is not a sustainable strategy.

Pew’s study is robust proof that the world of work — what we spend most of our time doing — is quickly moving online. Platform start-ups are cropping up every day to connect people directly with employers for short-term gig work. There is no evidence that this trend will reverse and every indication that the move to on-demand gig work is well underway. The future of work will look more like the apps and web-based platforms that we have been studying the past two years than the “traditional” employment around (some of us) today. These workers may be difficult to see but they are vital to the future of our economy. Our country cannot afford to leave them behind.


Siddharth Suri (@ssuri) is a Senior Researcher at Microsoft Research, New York City. Mary L. Gray (@maryLgray) is a Senior Researcher at Microsoft Research, Associate Professor at Indiana University and Fellow at the Harvard University Berkman Klein Center for Internet & Society. They are writing a book about workers’ experiences of the on-demand economy. You can read more about their research at inthecrowd.org.

Teaching on Day 1 of Trump

November 10, 2016

This post was spurred by an email from Tarleton Gillespie and Hector Postigo to contribute to a collected series that appeared on Culture Digitally today. The focus of that series is for scholars to “think hard about our own work and research agendas, and how they should shift to face new political realities.”

I didn’t have a chance to contribute to this collection yesterday because I was trying to figure out how to prepare a lecture on the networked press to a class of undergraduates I’d never met before.  Months ago, I agreed to give a guest lecture in Henry Jenkins’s Communication & Technology class and it never occurred to me that November 9th would be such an ominous day.

I hadn’t slept the previous night as I tried to quell a dizzying headache and nausea, thinking about what I could possibly say to students about how a field I’m supposedly an expert in got everything so wrong.  I spent the morning avoiding news coverage, deeply angry at an institution I’m supposed to be invested in.  Instead, I played with different lecture openings, looked at old slides, arranged and rearranged arguments I’ve made countless times before. I thought that I’d just rely on a PowerPoint deck I knew well, get through the 90 minutes, and return to my fog.

Time eventually ran out, I bundled up my preparation as it was, and made my way to campus.

I walked into the room still unclear about what I’d say.  I didn’t know these students (I was the guest lecturer) and, after seeing several “Make America Great Again” t-shirts on campus the previous day, I wasn’t sure what they’d be feeling.  I mentally prepared myself for everything from tears (theirs and mine) to being drawn into an encounter with celebrating Trump supporters.

I began class. I asked them to put away their laptops and had the lingerers in the back come up to fill out the front row seats.

I started honestly: I told them that I didn’t really know how to begin, that I’d never led a class like this on a day like this, and that I wasn’t even sure this was where I wanted to be right now.  Their smiles, nods, and knowing glances at each other put me at ease.

I asked them why they studied Communication.  I told them why I did.  I told them that our jobs as Communication scholars was to figure out why people act together, build meaning, and share consequences.  And I told them that there was never a more important time for us to be world-class at what we did.  I told them that we can’t make the mistake fish make: they don’t know what water is because they’re always swimming in it.  We can’t not think critically about media because it’s all around us and we think we have little power to shape it.

I asked them to take out a piece of paper and free-form write for 7 minutes on two questions: what do you want from online news? And what do we need from online news?  They wrote and I stared out the window.

When the time was up we talked about similarities among their individual desires, where they thought those desires came from, how hard it was to define a “we”, and whose responsibility it was to differentiate a want from a need.  All of their comments were peppered with stories from the previous night: how confused they were about what was happening, how unexpected everything was, how disconnected they’d felt from pro-Trump parts of the country.  It was exhausting, they said, to have to individually create media worlds that challenged what their instincts made them want.  They didn’t know what a public might need from the news.  They assumed that the news media knew.  And they talked about “objectivity” and “balance” and “neutrality” in all the ways students usually do when they first start thinking about journalism.

I then went old-school.  We talked about James Carey’s transmission versus ritual models of communication. I channeled my advisor Ted Glasser to argue that the press exists in traditions not nature (news is never found, it is always made).  We looked at the history of the AP Style Guide to see the contingency of language: e.g., how it took the New York Times a long time to call women anything other than “Miss” or “Mrs.” (“why were woman ever defined by their marital status?” one female student said) and why the Times called gay men “longtime companions” instead of lovers or partners in AIDS plague obituaries.  We talked about the difference between writing “illegal” versus “undocumented” immigrant.  We talked about why the AP captioned an image a young person of colour wading through chest-high water carrying food as a “looter” versus why the Agence-France Presse said two white people in a similar photo were “finding” bread.  We talked about gender, and orientation, and race and I claimed victory when one student said “it seems like objectivity is just a construct.” Yes, yes, yes.

We then looked at Pew stats on social media and the news.  We looked at data, asked questions about where it came from and what it meant, and tried to write headlines for stories that might be written about the findings.  One student said she was “angry” at her Facebook algorithm for keeping from her news about the rest of the country; she’d assumed that her feed of Hillary supporters was similar to everyone else’s.  She didn’t understand why a friend in Georgia texted her to say she was nervous about Trump winning because Hillary’s impending win was “all over social media”.

One student asked when news organizations began endorsing candidates and whether such endorsements mean anything anymore.  We looked at Pew’s stats about how Republicans, Democrats, and Independents use social media differently, questioned their significance, and started asking questions about the people who weren’t showing up in social media statistics.  For me, the best conversation came just as class was about to end.  I asked “if many people are getting their news from social media, why don’t platforms endorse candidates?” and one student replied “because they think they’re being neutral and objective, just like the press thought it was.”

I know there are ongoing debates about the empirical bases for filter bubbles and how it’s incredibly hard—and dangerous—to track media circulation using media effects methodologies.  That wasn’t the point of our discussion.  It was to be fish who noticed and thought about the water.  It was to ask new and uncomfortable questions about platforms and news.  It was to demand different kinds of data.  It was to challenge the wisdom and sincerity of tech leaders who say they’re running technology companies, not media companies.  It was to refuse to accept that media systems are only the responsibility of individuals tasked with figuring out the differences between what individuals want and publics need.  It was to avoid repeating the mistakes of the past: eras not when “we” thought it was okay to run sexist, homophobic, racist media systems but when those with the power to make such systems thought such failures were acceptable artifacts of chasing the myth of objectivity.

I’ll be honest that teaching hasn’t always been the favourite part of my job. I do it, I’m not terrible at it, I sometimes admire and learn from some of my students, and every now and then I get a high from a class well taught or a student who “gets it” and helps us both see the world differently.  But yesterday’s class reminded me of what it sometimes felt like to go to church.  Teaching felt like a form of communion: a way not only to transmit information but critically, reflectively, constructively figure out what it means to live together.  This is the spirit of the media systems we need now more than ever, that I’m re-energized to help build through teaching and scholarship.

The accountability of social media platforms, in the age of Trump

November 10, 2016

Pundits and commentators are just starting to pick through the rubble of this election and piece together what happens and what it means. In such cases, it is often easier to grab hold of one explanation — Twitter! racism! Brexit! James Comey! — and use it as a clothesline to hang the election on and shake it into some semblance of sense. But as scholars, we do a disservice to allow for simple or single explanations. “Perfect storm” has become a cliche, but I can see a set of elements that had to all be true, that came together, to produce the election we just witnessed: Globalization, economic precarity, and fundamentalist reactionary responses; the rise of the conservative right and its target tactics, especially against the Clintons; backlashes to multiculturalism, diversity, and the election of President Obama; the undoing of the workings and cultural authority of journalism; the alt-right and the undercurrents of social media; the residual fear and anxiety in America after 9/11. It is all of these things, and they were all already connected, before candidate Trump emerged.

Yet at the same time, my expertise does not stretch across all of these areas. I have to admit that I have trained myself right down to a fine point: social media, public discourse, technology, control, law. I have that hammer, and can only hit those nails. If I find myself being particular concerned about social media and harassment, or want to draw links between Trump’s dog whistle politics, Steve Bannon and Breitbart, the tactics of the alt-right, and the failings of Twitter to consider the space of discourse it has made possible, I risk making it seem like I think there’s one explanation, that technology produces social problems. I do not mean this. In the end, I have to have faith that, as I try to step up and say something useful about this one aspect, some other scholar is similarly stepping up an saying something about fundamentalist reactions to globalization, and someone else is stepping up to speak about the divisiveness of the conservative movement.

The book I’m working on now, nearing completion, is about social media platforms and the way they have (and have not) stepped into the role of arbiters of public discourse. The focus is on the platforms, their ambivalent combination of neutrality and intervention, the actual ways in which they go about policing offensive content and behavior, and the implications those tactics and arrangements have for how we think about the private curation of public discourse. But the book is framed in terms of the rise and now, for lack of a better word, adolescence of social media platforms, and how the initial optimism and enthusiasm that fueled the rise of the web, overshadowed the darker aspects already emergent there, and spurred the rise of the first social media platforms, seems to have given way to a set of concerns about how social media platforms work and how they are used — sometimes against people, and towards very different ends than were originally imagined. Those platforms did not at first imagine, and have not thoroughly thought through, how they now support (among many other things) a targeted project of racial animosity and a cold gamesmanship about public engagement. In the context of the election, my new goal is to boost that part of the argument, to highlight the opportunities that social media platforms offer to forms of public discourse that are not only harassing, racist, or criminal, but also that can take advantage of the dynamics of social media to create affirming circles of misinformation, to sip the poison of partisanship, to spur leaderless movements ripe for demagoguery — and how the social media platforms who now host this discourse have embraced a woefully insufficient sense of accountability, and must rethink how they have become mechanisms of social and political discourse, good and ill.

This specific project is too late in the game for a radical shift. But as I think beyond it, I feel an imperative to be sure that my choices of research topics are driven more by cultural and political imperative than merely my own curiosity. Or, ideally, the perfect meeting point of the two. It seems like the logical outcome of my interest in platforms and content moderation is to shift how we think of platforms, not as mere intermediaries between speakers (if they ever were, they are no longer) to understand them as constitutive of public discourse. If we understand them as constituting discourse — both by the choreography they install in their design, the moderation they conduct as a form of policy, and in the algorithmic selection of which raw material becomes “my feed,” then we expand their sense of responsibility. moreover, we might ask what it would mean to hold them accountable for making the political arena we want, we need. These questions will only grow in importance and complexity as these information systems depend more on more on algorithmic, machine learning, and other automated techniques;, more regularly include bots who are difficult to discern from the human participants; and that continue to extend their global reach for new consumers, also extending and entangling with the very shifts of globalization and tribalization we will continue to grapple with.

These comments were part of a longer post at Culture Digitally that I helped organize, in which a dozen scholars of media and information reflected on the election and the future directions of their own work, and our field, in light of the political realities we woke up to Wednesday morning. My specific scholarly community cannot address every issue that’s likely on the horizon, but our work does touch a surprising number of them. The kinds of questions that motivate our scholarship — from fairness and equity, to labor and precarity, to harassment and misogyny, to globalism and fear, to systems and control, to journalism and ignorance — all of these seem so much more pressing today then they even did yesterday.

Beyond bugs and features: A case for indeterminacy

October 19, 2016

spandrels-of-san-marco

Spandrels of San Marco. [CC License from Tango7174]

In 1979, Harvard professors Stephen Jay Gould and Richard Lewontin identified what they saw as a shortcoming in American and English evolutionary biology. It was, they argued, dominated by an adaptationist program.[1] By this, they meant that it embraced a misguided atomization of an organism’s traits, which then “are explained as structures optimally designed by natural selection for their function.”[2] For example, an exaggerated version of the adaptationist program might look at a contemporary human face, see a nose, and argue that it was adapted and selected for its ability to hold glasses. Such a theory of the nose not only ignores the plural functions the nose serves, but the complex history of its evolution, its shifting usefulness for different kinds of activities, its mutational detours, the different kinds of noses, and the nose’s evolution as part of the larger systems of faces, bodies, and environments.  So how should we talk about noses? Or, more importantly, how do we talk about any single feature of a complex system? Read more…

SMC at AoIR 2016: Internet Rules!

October 3, 2016

The 17th annual meeting of the Association of Internet Researchers is being held this week (Oct 5-8) in Berlin, Germany. It is a thrill to see so many past and present SMC members presenting their latest work, especially with Kate Crawford as part of the conference’s plenary panel Thursday evening. Below is a cheat sheet of all the SMC presentations, in case you want to follow along. (If we forgot somebody, please email us and we’ll add you!)

Wednesday, October 5th, 2016

Nancy Baym 9:00 AM – 5:30 PM Studying Labor: A Workshop on Theory and Methods
Jean Burgess 9:00 AM – 5:30 PM Digital Methods in Internet Research: A Sampling Menu
Kevin Driscoll 9:00 AM – 5:30 PM 404 History Not Found: Challenges in Internet History and Memory Studies
Tarleton Gillespie 9:00 AM – 5:30 PM The Internet Rules, But How? A Science and Technical Studies Take on Doing Internet Governance
Mary L. Gray 9:00 AM – 5:30 PM Studying Labor: A Workshop on Theory and Methods

Thursday, October 6th, 2016

Mike Ananny 9:00 AM – 10:30 AM Like, Share, Discuss? How News Factors and Secondary Factors Predict User Engagement with News Stories on Facebook
Nancy Baym 9:00 AM – 10:30 PM Platform Studies: The Rules of Engagement
Jean Burgess 9:00 AM – 10:30 AM Platform Studies: The Rules of Engagement
Katrin Tiidenberg 9:00 AM – 10:30 AM Session Chair: Fakes
Nancy Baym 11:00 AM – 12:30 PM Economies of the Internet
Eszter Hargittai 11:00 AM – 12:30 PM Session Chair: (Non)Participation
Tero Karppi 11:00 AM – 12:30 PM Algorithmic Identities
Alice Marwick 11:00 AM – 12:30 PM Scandal or Sex Crime? Ethical Implications of the Celebrity Nude Photo Leaks
Nancy Baym 2:00 PM – 3:30 PM Technically Unequal: Representational Issues in Technology Scholarship and Journalism
Eszter Hargittai 2:00 PM – 3:30 PM Unconnected: How Privacy Concerns Impact Internet Adoption
Katrin Tiidenberg 2:00 PM – 3:30 PM Representation, Presentation, Embodiment/Emplacement
Siva Vaidhyanatha 2:00 PM – 3:30 PM Technically Unequal: Representational Issues in Technology Scholarship and Journalism
Tarleton Gillespie 4:00 PM – 5:30 PM Roundtable: Censorship Online, and the Challenges of Studying What’s No Longer there
Kishonna Gray 4:00 PM – 5:30 PM Color-Coded: Breaking the Rules of Whiteness Online
Kate Crawford 7:00 PM – 8:30 PM Plenary Panel: Who Rules the Internet? Kate Crawford (Microsoft Research NYC), Fieke Jansen (Tactical Tech), Carolin Gerlitz (University of Siegen)

Friday, October 7th, 2016

Mike Ananny 9:00 AM – 10:30 AM Roundtable: Still Platforms: The Apparent Stability of Digital Intermediaries in the Face of Change and Challenge
Solon Barocas 9:00 AM – 10:30 AM Roundtable: Still Platforms: The Apparent Stability of Digital Intermediaries in the Face of Change and Challenge
Tarleton Gillespie 9:00 AM – 10:30 AM Roundtable: Still Platforms: The Apparent Stability of Digital Intermediaries in the Face of Change and Challenge
Stacy Blasiola 11:00 AM – 12:30 PM The Rules of Engagement: Managing Boundaries, Managing Identities
Jean Burgess 11:00 AM – 12:30 PM What Would Feminist Big Data, Data Studies and Datavis Look Like?
Kate Crawford 11:00 AM – 12:30 AM What Would Feminist Big Data, Data Studies and Datavis Look Like?
Airi Lampinen 11:00 AM – 12:30 PM The Rules of Engagement: Managing Boundaries, Managing Identities
Katrin Tiidenberg 11:00 AM – 12:30 PM Making and Breaking Rules on the Internet
Kate Miltner 2:00 PM – 3:30 PM Playing with the Rules
Kishonna Gray 4:00 PM – 5:30 PM The Cultural Politics of Feminism and Anti-Feminism After Gamergate
Tero Karppi 4:00 PM – 5:30 PM Disconnect. Unfriend. Disengage.
Susanna Paasonen 4:00 PM – 5:30 PM The Cultural Politics of Feminism and Anti-Feminism After Gamergate

Saturday, October 8th, 2016

Jean Burgess 11:00 AM – 12:30 PM The Sharing Economy and Its Discontents
Stefanie Duguay 11:00 AM – 12:30 PM The Sharing Economy and Its Discontents
Mary L. Gray 11:00 AM – 12:30 PM The Sharing Economy and Its Discontents
Dan Greene 11:00 AM – 12:30 PM Internet Industry Research Rules! A Roundtable on Methods
Germaine Halegoua 11:00 AM – 12:30 PM Intersections of Technology & Place
Jessa Lingel 11:00 AM – 12:30 PM Session Chair: Tech/Place
Nick Seaver 11:00 AM – 12:30 PM Internet Industry Research Rules! A Roundtable on Methods
Lana Swartz 11:00 AM – 12:30 PM Internet Industry Research Rules! A Roundtable on Methods
Kevin Driscoll 2:00 PM – 3:30 PM Session Chair: Histories
Annette Markham 2:00 PM – 3:30 PM AoIR Institutional Memory Panel
Dylan Mulvin 2:00 PM – 3:30 PM Embedded Dangers: The History of the Year 2000 Problem and the Politics of Technological Repair

New Article in New Media + Society

October 2, 2016

Germaine Halegoua (University of Kansas), Alex Leavitt (Facebook), and Mary L. Gray recently published an article based on research conducted while Germaine was a Ph.D. Intern and Alex was a Research Assistant at MSR.

The article, “Jumping For Fun?: Negotiating Mobility and the Geopolitics of Foursquare” was published in Social Media + Society and is available here: http://sms.sagepub.com/content/2/3/2056305116665859.full.pdf+html.

Abstract: Rather than assume that there is some universal “right way” to engage social media platforms, we interrogate how the location-based social media practice known as “jumping” played out on the popular service Foursquare. We use this case to investigate how a “global” or universal system is constructed with an imagined user in mind, one who enjoys a particular type of mobility and experience of place. We argue that the practices of “Indonesian” Foursquare jumpers and the discourses surrounding their use of Foursquare illustrate that practices understood as transgressive or resistive might best be read as strategies for engaging with a platform as groups contend with marginalizing social, economic, and/or political conditions.

Citation: Halegoua, Germaine R., Alex Leavitt, and Mary L. Gray. “Jumping for Fun? Negotiating Mobility and the Geopolitics of Foursquare.” Social Media + Society 2, no. 3 (July 1, 2016): 2056305116665859. doi:10.1177/2056305116665859.